CH₂Ph

Preliminary communication

The Ivanov reaction of 2, 3:5, 6-di-O-cyclohexylidene-D-mannonolactone

YU.A. ZHDANOV, G.V. BOGDANOVA, and O.YU. RIABUCHINA

Department of Chemistry, Rostov State University, Rostov-on-Don (U.S.S.R.)

(Received April 30th, 1973; accepted for publication, May 7th, 1973)

Although long-known, the Ivanov reaction¹ apparently has not yet been applied in the carbohydrate field, and we now report an application to 2, 3:5, 6-di-O-cyclohexylidene-D-mannono-1,4-lactone²(1)

When the lactone 1 was heated with a five-fold excess of the Ivanov reagent, conventionally prepared by treatment of phenylacetic acid with isopropylmagnesium chloride in ether, 79% of the expected product 4,5:7,8-di-O-cyclohexylidene-2-deoxy-2-phenyl-D-manno-3-octulofuranosonic acid (2), as colourless needles, m.p. ~115° (dec.) (from benzene and then ethanol), [α]_D¹⁸ +77° (c 6.7, chloroform), ν_{max} 1610 (Ph), 1710 (carboxylic-C=O), and 3490 cm⁻¹ (OH). N.m.r. data (CH₂Cl₂): δ 1.46 (m, 20 protons, cyclohexylidene groups) and 7.1 (s, 5 protons, Ph) (Found: C, 65.96; H, 7.29. C₂₆H₃₄O₈ calc.: C, 65.82; H, 7.17%).

3,4:6,7-Di-O-cyclohexylidene-1-deoxy-1-phenyl- α -D-manno-2-heptulofuranose (3), a by-product (12%) formed by decarboxylation of 2, was isolated by chromatography as a colourless syrup, [a] $_{\rm D}^{18}$ 0° (c 6.3, chloroform), $\nu_{\rm max}$ 1610 (Ph) and 3480 cm⁻¹ (OH). (Found: C, 69.82; H, 8.10. C₂₅H₃₄O₆ calc.: C, 69.77; H, 7.91%). A 5mM solution of 3 in carbon tetrachloride showed $\nu_{\rm max}$ for free hydroxyl at 3653 cm⁻¹, which established the a-D configuration.

Treatment of acid 2 with 20% ethanolic sodium hydroxide at room temperature gave a quantitative yield of 3. This transformation, which is similar to the reported^{2,3} con version of ethyl 2-deoxy-3-octulosonate into the respective methylketose, is a route to 1-aryl substituted methylketoses.

The unsubstituted ketose 4, obtained (50%) by hydrolysis of 3 with 80% acetic acid at room temperature, was a hygroscopic, colourless syrup, $[\alpha]_D^{18} - 2^\circ$ (c 3, water) (Found: C, 54.24; H, 7.05. $C_{13}H_{18}O_6 \cdot H_2O$ calc.: C, 54.17; H, 6.96%).

REFERENCES

- 1 D. Ivanoff and A. Spasoff, Bull. Soc. Chim. Fr., 49 (1931) 19, 371.
- 2 Yu. A. Zhdanov, Yu.E. Alexeev, and Ch.A. Khourdanov, Zh. Obshch. Khim., 42 (1972) 2776.
- 3 Yu.A. Zhdanov, Yu.E. Alexcev, and Ch.A.Khourdanov, Carbohyd. Res., 14 (1970) 422.